Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-1-Ferrocenyl-3-(2-furyl)prop-2-en-1one

Yong-Hong Liu and Rong Guo*

College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, People's Republic of China Correspondence e-mail: guorong@yzu.edu.cn

Received 11 March 2010; accepted 24 March 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.023; wR factor = 0.058; data-to-parameter ratio = 16.5.

The title compound, $[Fe(C_5H_5)(C_{12}H_9O_2)]$, exhibits an E configuration. In the ferrocene unit, the two cyclopentadienyl rings are almost parallel [dihedral angle = $0.76 (12)^{\circ}$] and the C atoms are in an eclipsed conformation. An intramolecular $C-H \cdots O$ hydrogen bond generates an S(5) ring. In the crystal, the molecules are linking into zigzag chains via two $C-H \cdots O$ hydrogen-bonding interactions along the *c* axis and neighbouring chains are stabilized by electrostatic interaction forces.

Related literature

For the biological activity of chalcones and chalcone derivatives, see: Liu et al. (2003). For the ability of some chalcones to block voltage-dependent potassium channels, see: Yarishkin et al. (2008). Replacement of the aromatic group of penicillins and cephalosporins by a ferrocenyl group could improve their antibiotic activity, see: Edwards et al. (1975). For our ongoing research in this area, see: Shi et al. (2004); Liu, Liu et al. (2008). For the synthesis, see: Huang et al. (1998). For a related structure, see: Liu, Ye et al. (2008) For graph-set notations of ring systems, see: Bernstein et al. (1995). For related literature, see: Zhai et al. (1999).

Experimental

Crystal data

[Fe(C₅H₅)(C₁₂H₉O₂)] $M_r = 306.13$ Orthorhombic, Pca21 a = 9.0677 (13) Åb = 14.222 (2) Å c = 10.4846 (15) Å

V = 1352.1 (3) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 1.11 \text{ mm}^{-1}$ T = 296 K0.28 \times 0.25 \times 0.22 mm $R_{\rm int} = 0.035$

11058 measured reflections

3012 independent reflections

2772 reflections with $I > 2\sigma(I)$

Data collection

```
Bruker SMART 1000 CCD
  diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2002)
  T_{\min} = 0.746, T_{\max} = 0.792
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.023$	H-atom parameters constrained
$wR(F^2) = 0.058$	$\Delta \rho_{\rm max} = 0.20 \text{ e } \text{\AA}^{-3}$
S = 1.00	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$
3012 reflections	Absolute structure: Flack (1983),
182 parameters	1340 Friedel pairs
1 restraint	Flack parameter: 0.012 (14)

Table 1 Hydrogen-bond geometry (Å, °).

	лμ	Н 4	D = A	
D=II···A	D=11	11····A	$D \cdots A$	$D=11\cdots A$
C13-H13···O1	0.93	2.45	2.797 (3)	102
$C6-H6\cdots O1^{i}$	0.93	2.56	3.473 (3)	166
$C12-H12\cdots O1^{i}$	0.93	2.71	3.576 (4)	155

Symmetry code: (i) $-x + \frac{1}{2}, y, z - \frac{1}{2}$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

The authors thank the National Nautral Science Foundation of China (No. 20773106) and the Natural Science Foundation of Yangzhou University (No. 2006XJJ03) for financial support of this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2265).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Edwards, E. I., Epton, R. & Marr, G. (1975). J. Organomet. Chem. 85, C23-C25
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Huang, G.-S., Chen, B.-H., Liu, C.-M., Ma, Y.-X. & Liu, Y.-H. (1998). Transition Met. Chem. 23, 589-592.
- Liu, Y.-H., Liu, J.-F., Jian, P.-M. & Liu, X.-L. (2008). Acta Cryst. E64, m1001m1002.
- Liu, M., Wilairat, P., Croft, S. L., Tan, A. L. C. & Go, M.-L. (2003). Bioorg. Med. Chem. 11, 2729-2738.
- Liu, Y.-H., Ye, J., Liu, X.-L., Liu, W.-L. & Shi, Y.-C. (2008). Acta Cryst. E64, m1241.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shi, Y. C., Yang, H.-M., Song, H.-B. & Liu, Y.-H. (2004). Polyhedron, 23, 1541-1546
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Yarishkin, O. V., Ryu, H. W., Park, J. Y., Yang, M. S., Hong, S. G. & Park, K. H. (2008). Bioorg. Med. Chem. Lett. 18, 137-140.
- Zhai, L., Chen, M., Blom, J., Theander, T. G., Christensen, S. B. & Kharazmi, A. (1999). Antimicrob. Agents Chemother. 43, 793-803.

supplementary materials

Acta Cryst. (2010). E66, m479 [doi:10.1107/S1600536810011001]

(E)-1-Ferrocenyl-3-(2-furyl)prop-2-en-1-one

Y.-H. Liu and R. Guo

Comment

Chalcone and its derivatives, as a natural produce, have shown strong antibacterial, antifungal, antitumor and anti-inflammatory properties (Liu *et al.*, 2003). Some chalcones demonstrated the ability to block voltage-dependent potassium channels (Yarishkin *et al.*, 2008). It has been demonstrated that the replacement of the aromatic group by the ferrocenyl moiety in penicillins and cephalosporins could improve their antibiotic activity (Edwards *et al.*, 1975). As on going research (Liu & Liu *et al.*, 2008; Shi *et al.*, 2004), we report herein the structure of the title compound.

The molecule of the title compound exists in the most stable configuration of (*E*)-isomer (Fig. 1). All of the C and O atoms are sp^2 -hybrid resulting in two large conjugated systems: one is formed by C1-C5 atoms and the other by the rest of the atoms. There is an intra-molecular hydrogen-bond C13–H13…O1 resulting in a five membered ring, *S*(*5*) in graph set notation (Bernstein *et al.*, 1995). The atoms O1/C11/C12/C13 are essentially planar and their mean-plane lies at 3.10 (14) and 16.35 (13) °, respectively, with the mean-planes of the furyl ring and the substituted cyclopentadienyl ring. In the ferrocene moiety, the Cps plane and Cp (the unsubstituted cyclopentadienyl ring) plane are almost parallel and the C atoms of Cp and Cps are in the eclipsed conformation. The Fe atom is slightly near the Cps palne as the distances Fe–Cgs and Fe–Cg are 1.6464 (9) and 1.6574 (10) Å, respectively, where Cgs and Cg are the centroids of Cps and Cp, respectively. The Cgs—Fe—Cg angle is 179.02 (5)°. The molecular dimensions agree very well with the corresponding dimensions reparted for the crystal structure of a similar compound (Liu & Ye *et al.*, 2008).

In the crystal structure, inter-molecular hydrogen-bonds of the type C—H···O, along the c axis, generate a $R_2^{1}(7)$ motif (Bernstein *et al.*, 1995), linking the adjacent molecules into a zig-zag chain (Fig. 2, Tab. 1). Further more, the chain and its neighboring inverse parallel chains are stabilized by electrostatic interaction forces.

Experimental

The title compound was synthesized according to the literature procedure (Huang *et al.*, 1998). An aqueous solution of potassium hydroxide (5%, 5 ml) was added slowly with stirring to a mixture of 2-furanylaldehyde (4.0 g, 0.043 mol) and acetoylferrocene (0.98 g, 0.043 mol) in ethanol (20 ml) in ice bath. The resulting mixture was stirred at room temperature for 4 h. The dark-red precipitated solid was filtered off, washed with water, dried and recrystallized from 95% ethanol (yield, 83%; M.P. 429.5-430.8 K. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a solution of the solid in dichloromethane/ ether (4:1 v/v) at room temperature over a period of 6 d.

Refinement

After their location in a difference map, all H atoms were fixed geometrically at ideal positions and allowed to ride on the parent C atoms, with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. An absolute structure was determined using anomalous dispersion effects employing 1353 Friedel pairs which were not merged.

Figures

Fig. 1. The molecular structure of the title compound, showing 50% probability ellipsoids. The C–H…O intra-molecular hydrogen bond is shown as dashed lines.

Fig. 2. Unit cell packing of the title compound, showing the inter-molecular hydrogen bonds $C-H\cdots O$ as dashed lines. For the sake of clarity, H atoms not involved in hydrogen bonding have been omitted.

 $D_{\rm x} = 1.504 \text{ Mg m}^{-3}$ Melting point: 429.5 K

 $\theta = 2.7-27.4^{\circ}$ $\mu = 1.11 \text{ mm}^{-1}$ T = 296 KPrism, orange

 $0.28 \times 0.25 \times 0.22 \text{ mm}$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 6056 reflections

(E)-1-Ferrocenyl-3-(2-furyl)prop-2-en-1-one

Crystal data

$[Fe(C_5H_5)(C_{12}H_9O_2)]$
$M_r = 306.13$
Orthorhombic, Pca21
Hall symbol: P 2c -2ac
<i>a</i> = 9.0677 (13) Å
<i>b</i> = 14.222 (2) Å
c = 10.4846 (15) Å
V = 1352.1 (3) Å ³
Z = 4
F(000) = 632

Data collection

Bruker SMART 1000 CCD diffractometer	3012 independent reflections
Radiation source: fine-focus sealed tube	2772 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.035$
ϕ and ω scans	$\theta_{\text{max}} = 27.7^{\circ}, \ \theta_{\text{min}} = 2.7^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2002)	$h = -11 \rightarrow 11$
$T_{\min} = 0.746, T_{\max} = 0.792$	$k = -18 \rightarrow 16$
11058 measured reflections	$l = -13 \rightarrow 13$

Refinement

Refinement on F^2	Hydro
Remement on P	sites
Least-squares matrix: full	H-ato
$R[F^2 > 2\sigma(F^2)] = 0.023$	w = 1

	where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.058$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.00	$\Delta \rho_{max} = 0.20 \text{ e} \text{ Å}^{-3}$
3012 reflections	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$
182 parameters	Extinction correction: SHELXL97 (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
1 restraint	Extinction coefficient: 0.0184 (11)
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 1340 Friedel pairs

Secondary atom site location: difference Fourier map Flack parameter: 0.012 (14)

Special details

Experimental. Analysis found (calculated) for C₁₇H₁₄FeO₂ (%): C 66.61 (66.70), H 4.56 (4.61).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Fe1	-0.04553 (2)	0.652980 (14)	0.19388 (4)	0.03343 (8)
01	0.35975 (15)	0.71855 (11)	0.24502 (15)	0.0524 (4)
O2	0.28635 (15)	0.93776 (10)	-0.13390 (15)	0.0525 (3)
C1	-0.1739 (2)	0.76594 (14)	0.1431 (2)	0.0523 (5)
H1	-0.1789	0.7934	0.0627	0.063*
C2	-0.26341 (18)	0.69146 (14)	0.1893 (3)	0.0522 (4)
H2	-0.3381	0.6615	0.1440	0.063*
C3	-0.2206 (2)	0.67061 (16)	0.3142 (2)	0.0550 (6)
H3	-0.2613	0.6243	0.3661	0.066*
C4	-0.1041 (2)	0.73260 (17)	0.3481 (2)	0.0582 (6)
H4	-0.0554	0.7344	0.4261	0.070*
C5	-0.0756 (2)	0.79058 (15)	0.2428 (3)	0.0555 (6)
H5	-0.0042	0.8374	0.2390	0.067*
C6	0.0731 (2)	0.61272 (14)	0.03780 (19)	0.0430 (4)
H6	0.0722	0.6417	-0.0417	0.052*
C7	-0.0200 (2)	0.53753 (14)	0.0779 (2)	0.0484 (5)
H7	-0.0924	0.5087	0.0287	0.058*
C8	0.0167 (2)	0.51418 (13)	0.2055 (3)	0.0493 (5)
H8	-0.0278	0.4675	0.2543	0.059*
C9	0.13284 (19)	0.57416 (13)	0.2463 (2)	0.0455 (4)
Н9	0.1776	0.5736	0.3261	0.055*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C10	0.16853 (19)	0.63550 (13)	0.14257 (19)	0.0385 (4)
C11	0.27507 (18)	0.71373 (13)	0.15362 (18)	0.0386 (4)
C12	0.2747 (2)	0.78616 (13)	0.05229 (18)	0.0398 (4)
H12	0.2132	0.7793	-0.0181	0.048*
C13	0.3620 (2)	0.86111 (13)	0.06132 (19)	0.0418 (4)
H13	0.4231	0.8638	0.1325	0.050*
C14	0.3723 (2)	0.93831 (14)	-0.02664 (19)	0.0436 (4)
C15	0.4527 (2)	1.01887 (16)	-0.0245 (2)	0.0568 (6)
H15	0.5206	1.0363	0.0376	0.068*
C17	0.3148 (3)	1.02013 (17)	-0.1960 (3)	0.0614 (6)
H16	0.2704	1.0383	-0.2720	0.074*
C16	0.4146 (3)	1.07107 (16)	-0.1333 (3)	0.0630 (6)
H17	0.4516	1.1295	-0.1569	0.076*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	0.03501 (11)	0.03456 (13)	0.03073 (12)	-0.00320 (8)	0.00069 (13)	-0.00016 (13)
01	0.0483 (7)	0.0608 (9)	0.0481 (8)	-0.0051 (6)	-0.0080 (6)	0.0125 (7)
02	0.0544 (8)	0.0487 (8)	0.0545 (9)	-0.0015 (6)	-0.0052 (7)	0.0061 (7)
C1	0.0495 (11)	0.0416 (11)	0.0659 (14)	0.0076 (8)	-0.0004 (9)	0.0000 (9)
C2	0.0351 (7)	0.0549 (10)	0.0666 (13)	-0.0006 (7)	-0.0031 (11)	-0.0056 (15)
C3	0.0449 (10)	0.0650 (14)	0.0551 (14)	-0.0073 (9)	0.0148 (9)	-0.0063 (11)
C4	0.0514 (11)	0.0724 (15)	0.0507 (13)	-0.0033 (10)	0.0060 (9)	-0.0240 (12)
C5	0.0476 (10)	0.0414 (11)	0.0775 (17)	-0.0027 (8)	0.0095 (10)	-0.0170 (10)
C6	0.0554 (10)	0.0400 (10)	0.0336 (10)	0.0012 (8)	0.0074 (8)	-0.0022 (8)
C7	0.0596 (11)	0.0368 (10)	0.0487 (12)	-0.0034 (9)	0.0028 (9)	-0.0078 (9)
C8	0.0535 (9)	0.0335 (8)	0.0611 (14)	-0.0005 (7)	0.0061 (12)	0.0097 (12)
C9	0.0433 (9)	0.0439 (11)	0.0493 (11)	0.0046 (8)	0.0006 (8)	0.0142 (8)
C10	0.0380 (8)	0.0394 (9)	0.0380 (9)	0.0069 (7)	0.0059 (7)	0.0036 (7)
C11	0.0328 (8)	0.0436 (10)	0.0394 (10)	0.0044 (7)	0.0058 (7)	0.0046 (7)
C12	0.0391 (9)	0.0454 (10)	0.0348 (10)	-0.0003 (8)	0.0023 (7)	0.0036 (8)
C13	0.0436 (9)	0.0451 (10)	0.0365 (10)	-0.0010 (8)	0.0045 (7)	0.0005 (8)
C14	0.0460 (10)	0.0441 (11)	0.0408 (10)	-0.0008 (8)	0.0072 (8)	-0.0030 (8)
C15	0.0697 (14)	0.0522 (13)	0.0486 (13)	-0.0186 (10)	0.0019 (9)	-0.0009 (10)
C17	0.0744 (14)	0.0521 (13)	0.0578 (15)	0.0124 (11)	0.0043 (12)	0.0136 (10)
C16	0.0848 (16)	0.0428 (12)	0.0614 (15)	-0.0070 (12)	0.0217 (13)	0.0049 (11)

Geometric parameters (Å, °)

Fe1—C10	2.0295 (18)	С5—Н5	0.9300
Fe1—C6	2.0404 (19)	C6—C7	1.426 (3)
Fe1—C5	2.041 (2)	C6—C10	1.435 (3)
Fe1—C9	2.0431 (18)	С6—Н6	0.9300
Fe1—C3	2.044 (2)	С7—С8	1.418 (4)
Fe1—C4	2.044 (2)	С7—Н7	0.9300
Fe1—C2	2.0506 (17)	C8—C9	1.421 (3)
Fe1—C1	2.054 (2)	C8—H8	0.9300
Fe1—C7	2.056 (2)	C9—C10	1.431 (3)

Fe1—C8	2.0566 (18)	С9—Н9	0.9300
O1—C11	1.230 (2)	C10-C11	1.478 (3)
O2—C17	1.365 (3)	C11—C12	1.480 (3)
O2—C14	1.369 (2)	C12—C13	1.331 (3)
C1—C5	1.418 (3)	C12—H12	0.9300
C1—C2	1.419 (3)	C13—C14	1.437 (3)
C1—H1	0.9300	С13—Н13	0.9300
C2—C3	1.398 (4)	C14—C15	1.358 (3)
С2—Н2	0.9300	C15—C16	1.404 (4)
C3—C4	1.421 (3)	C15—H15	0.9300
С3—Н3	0.9300	C17—C16	1.332 (4)
C4—C5	1.402 (4)	C17—H16	0.9300
C4—H4	0.9300	C16—H17	0.9300
C10—Fe1—C6	41.30 (8)	C5—C4—C3	107.8 (2)
C10—Fe1—C5	108.18 (8)	C5—C4—Fe1	69.82 (13)
C6—Fe1—C5	122.75 (9)	C3—C4—Fe1	69.63 (12)
C10—Fe1—C9	41.14 (7)	С5—С4—Н4	126.1
C6—Fe1—C9	69 16 (9)	C3—C4—H4	126.1
C5—Fe1—C9	124 36 (9)	Fe1—C4—H4	126.0
C10—Fe1—C3	127.30(9)	C4-C5-C1	108 63 (19)
C6-Fe1-C3	159.93 (9)	C4 - C5 - Fe1	70.04(12)
C_{5} Fe1 C_{3}	67 88 (9)	$C_1 = C_2 = F_2$	70.04(12)
C_{9} Fe1 C_{3}	121.09(9)	$C_1 = C_2 = C_1$	125.7
$C_{10} = C_{10}$	121.09(9) 121.74(9)	$C_{4} = C_{5} = H_{5}$	125.7
C_{10} $-re_1$ $-C_4$	121.74(9)		125.7
$C_0 = F_0 = C_4$	137.94 (9)	FeI—C5—H5	125.0
C_{3} FeI C_{4}	40.14 (11)	$C_{}^{}C_{0}^{}C_{10}^{}C_{0}^{}C_{10}^{}C_{0}^{}C$	107.50 (18)
C_{9} FeI C_{4}	107.27 (10)	$C/-C_{0}$ Fel	/0.23 (11)
C_3 —FeI—C4	40.70 (9)	C10-C6-Fei	68.95 (11)
C10—Fe1—C2	161.43 (10)	С/—С6—Н6	126.3
C6—Fe1—C2	124.34 (11)	С10—С6—Н6	126.3
C5—Fe1—C2	67.74 (8)	Fel—C6—H6	126.1
C9—Fe1—C2	156.26 (9)	C8—C7—C6	108.35 (18)
C3—Fe1—C2	39.92 (11)	C8—C7—Fel	69.85 (12)
C4—Fe1—C2	67.69 (10)	C6—C7—Fe1	69.03 (11)
C10—Fe1—C1	124.69 (8)	С8—С7—Н7	125.8
C6—Fe1—C1	108.09 (9)	С6—С7—Н7	125.8
C5—Fe1—C1	40.50 (9)	Fe1—C7—H7	126.9
C9—Fe1—C1	161.34 (8)	C7—C8—C9	108.49 (18)
C3—Fe1—C1	67.89 (10)	C7—C8—Fe1	69.82 (11)
C4—Fe1—C1	67.95 (10)	C9—C8—Fe1	69.21 (10)
C2—Fe1—C1	40.46 (8)	С7—С8—Н8	125.8
C10—Fe1—C7	68.76 (8)	С9—С8—Н8	125.8
C6—Fe1—C7	40.74 (8)	Fe1—C8—H8	126.8
C5—Fe1—C7	158.29 (10)	C8—C9—C10	107.7 (2)
C9—Fe1—C7	68.39 (9)	C8—C9—Fe1	70.23 (10)
C3—Fe1—C7	123.40 (9)	C10—C9—Fe1	68.92 (10)
C4—Fe1—C7	159.94 (10)	С8—С9—Н9	126.1
C2—Fe1—C7	107.92 (9)	С10—С9—Н9	126.1
C1—Fe1—C7	122.34 (9)	Fe1—C9—H9	126.3

supplementary materials

C10—Fe1—C8	68.64 (8)	C9—C10—C6	107.91 (16)
C6—Fe1—C8	68.50 (10)	C9—C10—C11	123.17 (18)
C5—Fe1—C8	160.39 (11)	C6-C10-C11	128.60 (17)
C9—Fe1—C8	40.57 (8)	C9—C10—Fe1	69.94 (10)
C3—Fe1—C8	107.12 (10)	C6-C10-Fe1	69.76 (10)
C4—Fe1—C8	123.79 (12)	C11-C10-Fe1	120.80 (13)
C2—Fe1—C8	121.45 (8)	O1—C11—C10	120.74 (17)
C1—Fe1—C8	157.13 (10)	O1—C11—C12	121.46 (17)
C7—Fe1—C8	40.33 (11)	C10-C11-C12	117.79 (16)
C17—O2—C14	106.22 (17)	C13—C12—C11	120.34 (18)
C5—C1—C2	107.0 (2)	C13—C12—H12	119.8
C5-C1-Fe1	69.26 (12)	C11—C12—H12	119.8
C2-C1-Fe1	69.63 (11)	C12—C13—C14	127.24 (19)
C5—C1—H1	126.5	C12—C13—H13	116.4
C2	126.5	C14—C13—H13	116.4
Fe1—C1—H1	126.2	C15—C14—O2	108.90 (19)
C3—C2—C1	108.6 (2)	C15-C14-C13	132.0 (2)
C3—C2—Fe1	69.77 (11)	O2—C14—C13	119.06 (17)
C1—C2—Fe1	69.91 (10)	C14—C15—C16	107.5 (2)
С3—С2—Н2	125.7	С14—С15—Н15	126.3
C1—C2—H2	125.7	С16—С15—Н15	126.3
Fe1—C2—H2	126.2	C16—C17—O2	111.1 (2)
C2—C3—C4	108.0 (2)	C16—C17—H16	124.4
C2—C3—Fe1	70.31 (12)	O2—C17—H16	124.4
C4—C3—Fe1	69.67 (12)	C17—C16—C15	106.3 (2)
С2—С3—Н3	126.0	С17—С16—Н17	126.9
С4—С3—Н3	126.0	С15—С16—Н17	126.9
Fe1—C3—H3	125.6		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
C13—H13…O1	0.93	2.45	2.797 (3)	102
C6—H6…O1 ⁱ	0.93	2.56	3.473 (3)	166
C12—H12···O1 ⁱ	0.93	2.71	3.576 (4)	155
Symmetry codes: (i) $-x+1/2$, <i>y</i> , $z-1/2$.				

Fig. 1

